Einstein, Albert
Albert Einstein
From Wikipedia, the free encyclopedia
(Redirected from Einstein)
Jump to: navigation, search
"Einstein" redirects here. For other uses, see Einstein (disambiguation).
Albert Einstein |
|
Born |
14 March 1879 |
Died |
18 April 1955 (aged 76) |
Resting place |
Grounds of the Institute for Advanced Study, Princeton, New Jersey. |
Residence |
Germany, Italy, Switzerland, USA |
Ethnicity |
|
Citizenship |
· Württemberg/Germany (until 1896) · Stateless (1896–1901) · Switzerland (from 1901) · Austria (1911–12) · Germany (1914–33) · United States (from 1940)[2] |
Known for |
|
Spouse(s) |
· Mileva Marić (1903–1919) · Elsa Löwenthal, née Einstein, (1919–1936) |
Awards |
· Nobel Prize in Physics (1921) · Copley Medal (1925) · Max Planck Medal (1929) |
Signature |
Albert Einstein (pronounced /ˈælbərt ˈaɪnstaɪn/; German: [ˈalbɐt ˈaɪnʃtaɪn] ( listen); 14 March 1879 – 18 April 1955) was a theoretical physicist, philosopher and author who is widely regarded as one of the most influential and best known scientists and intellectuals of all time. A German-Swiss Nobel laureate, he is often regarded as the father of modern physics.[3] He received the 1921 Nobel Prize in Physics "for his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect".[4]
His many contributions to physics include the special and general theories of relativity, the founding of relativistic cosmology, the first post-Newtonian expansion, the explanation of the perihelion precession of Mercury, the prediction of the deflection of light by gravity (gravitational lensing), the first fluctuation dissipation theorem which explained the Brownian motion of molecules, the photon theory and the wave-particle duality, the quantum theory of atomic motion in solids, the zero-point energy concept, the semi-classical version of the Schrödinger equation, and the quantum theory of a monatomic gas which predicted Bose–Einstein condensation.
Einstein published more than 300 scientific and over 150 non-scientific works; he additionally wrote and commentated prolifically on various philosophical and political subjects.[5] His great intelligence and originality has made the word "Einstein" synonymous with genius.[6]
Biography
Early life and education
Einstein at the age of 4.
Albert Einstein was born in Ulm, in the Kingdom of Württemberg in the German Empire on 14 March 1879.[7] His father was Hermann Einstein, a salesman and engineer. His mother was Pauline Einstein (née Koch). In 1880, the family moved to Munich, where his father and his uncle founded Elektrotechnische Fabrik J. Einstein & Cie, a company that manufactured electrical equipment based on direct current.[7]
Albert Einstein in 1893 (age 14).
The Einsteins were non-observant Jews. Their son attended a Catholic elementary school from the age of five until ten.[8] Although Einstein had early speech difficulties, he was a top student in elementary school.[9][10]
His father once showed him a pocket compass; Einstein realized that there must be something causing the needle to move, despite the apparent "empty space".[11] As he grew, Einstein built models and mechanical devices for fun and began to show a talent for mathematics.[7] In 1889, Max Talmud (later changed to Max Talmey) introduced the ten-year old Einstein to key texts in science, mathematics and philosophy, including Immanuel Kant's Critique of Pure Reason and Euclid's Elements (which Einstein called the "holy little geometry book").[12] Talmud was a poor Jewish medical student from Poland. The Jewish community arranged for Talmud to take meals with the Einsteins each week on Thursdays for six years. During this time Talmud wholeheartedly guided Einstein through many secular educational interests.[13][14]
In 1894, his father's company failed: direct current (DC) lost the War of Currents to alternating current (AC). In search of business, the Einstein family moved to Italy, first to Milan and then, a few months later, to Pavia. When the family moved to Pavia, Einstein stayed in Munich to finish his studies at the Luitpold Gymnasium. His father intended for him to pursue electrical engineering, but Einstein clashed with authorities and resented the school's regimen and teaching method. He later wrote that the spirit of learning and creative thought were lost in strict rote learning. In the spring of 1895, he withdrew to join his family in Pavia, convincing the school to let him go by using a doctor's note.[7] During this time, Einstein wrote his first scientific work, "The Investigation of the State of Aether in Magnetic Fields".[15]
Einstein applied directly to the Eidgenössische Polytechnische Schule (ETH) in Zürich, Switzerland. Lacking the requisite Matura certificate, he took an entrance examination, which he failed, although he got exceptional marks in mathematics and physics.[16] The Einsteins sent Albert to Aarau, in northern Switzerland to finish secondary school.[7] While lodging with the family of Professor Jost Winteler, he fell in love with the family's daughter, Marie. (His sister Maja later married the Wintelers' son Paul.)[17] In Aarau, Einstein studied Maxwell's electromagnetic theory. At age 17, he graduated, and, with his father's approval, renounced his citizenship in the German Kingdom of Württemberg to avoid military service, and in 1896 he enrolled in the four year mathematics and physics teaching diploma program at the Polytechnic in Zurich. Marie Winteler moved to Olsberg, Switzerland for a teaching post.
Einstein's future wife, Mileva Marić, also enrolled at the Polytechnic that same year, the only woman among the six students in the mathematics and physics section of the teaching diploma course. Over the next few years, Einstein and Marić's friendship developed into romance, and they read books together on extra-curricular physics in which Einstein was taking an increasing interest. In 1900 Einstein was awarded the Zurich Polytechnic teaching diploma, but Marić failed the examination with a poor grade in the mathematics component, theory of functions.[18] There have been claims that Marić collaborated with Einstein on his celebrated 1905 papers[19][20], but historians of physics who have studied the issue find no evidence that she made any substantive contributions.[21][22][23][24]
Marriages and children
It has been suggested that Lieserl Einstein be merged into this article or section. (Discuss) |
In early 1902, Einstein and Mileva Marić had a daughter they named Lieserl in their correspondence, who was born in Novi Sad where Marić's parents lived.[25] Her full name is not known, and her fate is uncertain after 1903.[26]
Einstein and Marić married in January 1903. In May 1904, the couple's first son, Hans Albert Einstein, was born in Bern, Switzerland. Their second son, Eduard, was born in Zurich in July 1910. In 1914, Einstein moved to Berlin, while his wife remained in Zurich with their sons. Marić and Einstein divorced on 14 February 1919, having lived apart for five years.
Einstein married Elsa Löwenthal (née Einstein) on 2 June 1919, after having had a relationship with her since 1912. She was his first cousin maternally and his second cousin paternally. In 1933, they emigrated permanently to the United States. In 1935, Elsa Einstein was diagnosed with heart and kidney problems and died in December 1936.[27]
Patent office
Left to right: Conrad Habicht, Maurice Solovine and Einstein, who founded the Olympia Academy
After graduating, Einstein spent almost two frustrating years searching for a teaching post, but a former classmate's father helped him secure a job in Bern, at the Federal Office for Intellectual Property, the patent office, as an assistant examiner.[28] He evaluated patent applications for electromagnetic devices. In 1903, Einstein's position at the Swiss Patent Office became permanent, although he was passed over for promotion until he "fully mastered machine technology".[29]
Much of his work at the patent office related to questions about transmission of electric signals and electrical-mechanical synchronization of time, two technical problems that show up conspicuously in the thought experiments that eventually led Einstein to his radical conclusions about the nature of light and the fundamental connection between space and time.[30]
With a few friends he met in Bern, Einstein started a small discussion group, self-mockingly named "The Olympia Academy", which met regularly to discuss science and philosophy. Their readings included the works of Henri Poincaré, Ernst Mach, and David Hume, which influenced his scientific and philosophical outlook.
Academic career
In 1901, Einstein had a paper on the capillary forces of a straw published in the prestigious Annalen der Physik.[31] On 30 April 1905, he completed his thesis, with Alfred Kleiner, Professor of Experimental Physics, serving as pro-forma advisor. Einstein was awarded a PhD by the University of Zurich. His dissertation was entitled "A New Determination of Molecular Dimensions".[32] That same year, which has been called Einstein's annus mirabilis or "miracle year", he published four groundbreaking papers, on the photoelectric effect, Brownian motion, special relativity, and the equivalence of matter and energy, which were to bring him to the notice of the academic world.
By 1908, he was recognized as a leading scientist, and he was appointed lecturer at the University of Berne. The following year, he quit the patent office and the lectureship to take the position of physics docent[33] at the University of Zurich. He became a full professor at Karl-Ferdinand University in Prague in 1911. In 1914, he returned to Germany after being appointed director of the Kaiser Wilhelm Institute for Physics (1914–1932)[34] and a professor at the Humboldt University of Berlin, although with a special clause in his contract that freed him from most teaching obligations. He became a member of the Prussian Academy of Sciences. In 1916, Einstein was appointed president of the German Physical Society (1916–1918).[35][36]
In 1911, he had calculated that, based on his new theory of general relativity, light from another star would be bent by the Sun's gravity. That prediction was claimed confirmed by observations made by a British expedition led by Sir Arthur Eddington during the solar eclipse of May 29, 1919. International media reports of this made Einstein world famous. On 7 November 1919, the leading British newspaper The Times printed a banner headline that read: "Revolution in Science – New Theory of the Universe – Newtonian Ideas Overthrown".[37] (Much later, questions were raised whether the measurements were accurate enough to support Einstein's theory.)
In 1921, Einstein was awarded the Nobel Prize in Physics. Because relativity was still considered somewhat controversial, it was officially bestowed for his explanation of the photoelectric effect. He also received the Copley Medal from the Royal Society in 1925.
Travels abroad
Einstein visited New York City for the first time on 2 April 1921. When asked where he got his scientific ideas, Einstein explained that he believed scientific work best proceeds from an examination of physical reality and a search for underlying axioms, with consistent explanations that apply in all instances and avoid contradicting each other. He also recommended theories with visualizable results.(